Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 170, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925490

RESUMO

Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that poses a severe threat to humans due to its high morbidity and the lack of viable countermeasures. Vaccines are the most crucial defense against NiV infections. Here, a recombinant chimpanzee adenovirus-based vaccine (AdC68-G) and a DNA vaccine (DNA-G) were developed by expressing the codon-optimized full-length glycoprotein (G) of NiV. Strong and sustained neutralizing antibody production, accompanied by an effective T-cell response, was induced in BALB/c mice by intranasal or intramuscular administration of one or two doses of AdC68-G, as well as by priming with DNA-G and boosting with intramuscularly administered AdC68-G. Importantly, the neutralizing antibody titers were maintained for up to 68 weeks in the mice that received intramuscularly administered AdC68-G and the prime DNA-G/boost AdC68-G regimen, without a significant decline. Additionally, Syrian golden hamsters immunized with AdC68-G and DNA-G via homologous or heterologous prime/boost immunization were completely protected against a lethal NiV virus challenge, without any apparent weight loss, clinical signs, or pathological tissue damage. There was a significant reduction in but not a complete absence of the viral load and number of infectious particles in the lungs and spleen tissue following NiV challenge. These findings suggest that the AdC68-G and DNA-G vaccines against NiV infection are promising candidates for further development.

2.
JCI Insight ; 8(23)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37917215

RESUMO

Nipah virus (NiV), a bat-borne paramyxovirus, results in neurological and respiratory diseases with high mortality in humans and animals. Developing vaccines is crucial for fighting these diseases. Previously, only a few studies focused on the fusion (F) protein alone as the immunogen. Numerous NiV strains have been identified, including 2 representative strains from Malaysia (NiV-M) and Bangladesh (NiV-B), which differ significantly from each other. In this study, an F protein sequence with the potential to prevent different NiV strain infections was designed by bioinformatics analysis after an in-depth study of NiV sequences in GenBank. Then, a chimpanzee adenoviral vector vaccine and a DNA vaccine were developed. High levels of immune responses were detected after AdC68-F, pVAX1-F, and a prime-boost strategy (pVAX1-F/AdC68-F) in mice. After high titers of humoral responses were induced, the hamsters were challenged by the lethal NiV-M and NiV-B strains separately. The vaccinated hamsters did not show any clinical signs and survived 21 days after infection with either strain of NiV, and no virus was detected in different tissues. These results indicate that the vaccines provided complete protection against representative strains of NiV infection and have the potential to be developed as a broad-spectrum vaccine for human use.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Vacinas Virais , Cricetinae , Animais , Humanos , Camundongos , Mesocricetus , Infecções por Henipavirus/prevenção & controle
3.
Pak J Med Sci ; 38(6): 1696-1702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991268

RESUMO

Objectives: The rapid ultrasound in shock examination (RUSH process) is an assessment of patient's heart function, volume status, and vasculature, which can help anesthesiologist understand the patient's physical condition. In this study, the RUSH process was applied to elderly emergency surgery patients to evaluate whether it is beneficial to maintain the patient's vital signs stable during the operation. Methods: In this randomized controlled clinical study one hundred elderly patients who needed general anesthesia and emergency surgery from January 2021 to July 2021 were randomly divided into RUSH group (Group-A, n=52) and control group (Group-B, n=48). The main result include the area under the intraoperative blood pressure curve (AUC), liquid input, urine output, lactic acid levels, number of vasoactive drugs used. Results: There were no significant differences in patients' basic information, preoperative blood pressure, intraoperative blood loss, intraoperative fluid input, intraoperative blood transfusion, and urine output. Intraoperative systolic blood pressure less than 90mmHg AUC of Group-A is less than Group-B(P<0.05), diastolic blood pressure less than 60mmHg AUC of Group-A is less than Group-B(P<0.05). After the operation, the blood gas analysis lactic acid level in Group-A was lower than that in Group-B(P<0.05). Group-A used more vasoactive drugs than Group-B(P<0.05). Conclusion: The bedside ultrasound RUSH process is of great significance for anesthesiologist to understand the preoperative physical condition of elderly emergency surgery patients, and is beneficial to maintain the stability of intraoperative vital signs.

4.
Virol Sin ; 37(4): 581-590, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35659605

RESUMO

SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.


Assuntos
COVID-19 , Vacinas Virais , Adenoviridae/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Pan troglodytes , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Sintéticas
5.
Nat Commun ; 12(1): 2623, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976198

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients. Among them, P4A1 interacts directly with and covers majority of the Receptor Binding Motif of the Spike Receptor-Binding Domain, shown by high-resolution complex structure analysis. We further demonstrate the binding and neutralizing activities of P4A1 against wild type and mutant Spike proteins or pseudoviruses. P4A1 was subsequently engineered to reduce the potential risk for Antibody-Dependent Enhancement of infection and to extend its half-life. The engineered antibody exhibits an optimized pharmacokinetic and safety profile, and it results in complete viral clearance in a rhesus monkey model of COVID-19 following a single injection. These data suggest its potential against SARS-CoV-2 related diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos/imunologia , COVID-19/epidemiologia , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Macaca mulatta , Masculino , Mutação , Pandemias , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Resultado do Tratamento , Células Vero , Tratamento Farmacológico da COVID-19
6.
Emerg Microbes Infect ; 7(1): 60, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618723

RESUMO

The persistent public health threat of infection with Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the need for an effective and safe MERS-CoV vaccine. In this study, we prepared and vaccinated mice with either a Spike (S) protein or inactivated whole MERS-CoV (IV) with a combined adjuvant (alum+CpG) as a vaccine formulation. Similar levels of the anti-S protein IgG response and neutralizing activity were induced by both the S protein and IV vaccines. In addition, immune responses against three other structural proteins, the envelope (E), membrane (M), and nucleocapsid (N) proteins, were also detected in sera of mice that received IV. No antigen-specific T-cell immunity was detected after vaccination based on the interferon-γ ELISpot assay. Mice were transduced with Ad5-hDPP4 after the final immunization and were then challenged with MERS-CoV (1 × 105 plaque-forming units). Compared with the control group (adjuvant alone), mice immunized with the S protein or IV showed slightly lower pathological damage in the lung, as well as reduced antigen expression and lung virus titers. Mice that received IV formulations also showed increased protective immunity (almost no live virus was isolated from the lung). In conclusion, our data indicate that immunization with our IV formulation induced enhanced protection in mice compared to immunization with the S protein against MERS-CoV, which should be further tested in camels and clinical trials.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Infecções por Coronavirus/imunologia , Feminino , Humanos , Imunidade Celular , Imunização , Imunoglobulina G/imunologia , Pulmão/imunologia , Pulmão/virologia , Camundongos , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Vacinas de Produtos Inativados/administração & dosagem , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem
7.
J Infect Dis ; 213(6): 904-14, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26203058

RESUMO

Middle East respiratory syndrome (MERS) is associated with a mortality rate of >35%. We previously showed that MERS coronavirus (MERS-CoV) could infect human macrophages and dendritic cells and induce cytokine dysregulation. Here, we further investigated the interplay between human primary T cells and MERS-CoV in disease pathogenesis. Importantly, our results suggested that MERS-CoV efficiently infected T cells from the peripheral blood and from human lymphoid organs, including the spleen and the tonsil. We further demonstrated that MERS-CoV infection induced apoptosis in T cells, which involved the activation of both the extrinsic and intrinsic apoptosis pathways. Remarkably, immunostaining of spleen sections from MERS-CoV-infected common marmosets demonstrated the presence of viral nucleoprotein in their CD3(+) T cells. Overall, our results suggested that the unusual capacity of MERS-CoV to infect T cells and induce apoptosis might partly contribute to the high pathogenicity of the virus.


Assuntos
Apoptose/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Linfócitos T/virologia , Animais , Anticorpos Antivirais , Callithrix , Células Cultivadas , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Regulação da Expressão Gênica , Humanos , Tonsila Palatina/citologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Baço/citologia , Linfócitos T/fisiologia
8.
PLoS One ; 10(3): e0119964, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803721

RESUMO

Human cytomegalovirus infects the majority of humanity which may lead to severe morbidity and mortality in newborns and immunocompromised adults. Humoral and cellular immunity are critical for controlling CMV infection. HCMV envelope glycoprotein complexes (gC I, II, III) represent major antigenic targets of antiviral immune responses. The gCIII complex is comprised of three glycoproteins, gH, gL, and gO. In the present study, DNA vaccines expressing the murine cytomegalovirus homologs of the gH, gL, and gO proteins were evaluated for protection against lethal MCMV infection in the mouse model. The results demonstrated that gH, gL, or gO single gene immunization could not yet offer good protection, whereas co-vaccination strategy apparently showed effects superior to separate immunization. Twice immunization with gH/gL/gO pDNAs could provide mice complete protection against lethal salivary gland-derived MCMV (SG-MCMV) challenge, while thrice immunization with pgH/pgL, pgH/pgO or pgL/pgO could not provide full protection. Co-vaccination with gH, gL and gO pDNAs elicited robust neutralizing antibody and cellular immune responses. Moreover, full protection was also achieved by simply passive immunization with anti-gH/gL/gO sera. These data demonstrated that gCIII complex antigens had fine immunogenicity and might be a promising candidate for the development of HCMV vaccines.


Assuntos
Antígenos Virais/genética , Glicoproteínas/genética , Muromegalovirus/imunologia , Vacinação/métodos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Animais , Anticorpos Antivirais/imunologia , Feminino , Células HEK293 , Humanos , Imunidade Celular , Imunização Passiva , Camundongos
9.
Bing Du Xue Bao ; 31(6): 593-600, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26951002

RESUMO

In this study, we evaluated the difference ot biological characteristics in the MERS-CoV infected mice model in prior to transduction with different dosage of human DPP4. Firstly, we transduced different dosage of DPP4 (high or low) into mice, and then challenged them with MERS-CoV in order to establish the model. After establishment of mice model, we observed the clinical signs of disease, virus replication, immunopathogenesis and antibody response. The results indicated that the infected mice showed typical pneumonia, virus replication, histological lesions, and neutralizing antibody production. Moreover, the high dosage group was superior to the low dosage group. Fourteen days after infection, the specific antibody to virus structural protein and neutralizing antibody were analyzed, the high dosage group induced higher level antibody. In summary, the MERS-CoV infected mice model were established prior transduction with DPP4, and the level of DPP4 influenced the clinical signs of disease, virus replication and antibody response in this model.


Assuntos
Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Animais , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Dipeptidil Peptidase 4/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA